题目内容
【题目】已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义域内的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0.
(1)求证:f(x)是偶函数;
(2)求证:f(x)在(0,+∞)上是增函数.
【答案】(1)见解析 (2)见解析
【解析】证明: (1)因对定义域内的任意x1、x2都有
f(x1·x2)=f(x1)+f(x2),
令x1=x,x2=-1,
则有f(-x)=f(x)+f(-1).
又令x1=x2=-1,得2f(-1)=f(1).
再令x1=x2=1,得f(1)=0,
从而f(-1)=0,
于是有f(-x)=f(x),所以f(x)是偶函数.
(2)设0<x1<x2,
则f(x1)-f(x2)=f(x1)-f(x1·)=f(x1)-[f(x1)+f()]=-f(),
由于0<x1<x2,所以>1,从而f()>0,
故f(x1)-f(x2)<0,即f(x1)<f(x2),
所以f(x)在(0,+∞)上是增函数.