题目内容
【题目】如图(1)五边形中,
,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.
(1)求证:平面平面;
(2)若四棱柱的体积为,求四面体的体积.
【答案】(1)详见解析;(2).
【解析】试题分析:
(1)要证两平面垂直,就要证线面垂直,首先利用已知条件与平面垂直,为此取的中点,可证得四边形为平行四边形,所以,从而平面,也即
.于是由即及为的中点,可得为等边三角形,
,由,得, ,可得平面平面平面.
(2)利用棱锥体积公式,三棱锥的底面的面积是四棱锥的底面面积的,高为其一半,由体积公式可得结论.
试题解析:
(1)证明:取的中点,连接,则,
又,所以,则四边形为平行四边形,所以,
又平面,
∴平面,
∴.
由即及为的中点,可得为等边三角形,
∴,
又,∴,∴,
∴平面平面,
∴平面平面.
(2)解:设四棱锥的高为,四边形的面积为,
则,
又,四面体底面上的高为.
∴,
所以四面体的体积为.
【题目】某印刷厂为了研究印刷单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数(千册) | 2 | 3 | 4 | 5 | 8 |
单册成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);
印刷册数(千册) | 2 | 3 | 4 | 5 | 8 | |
单册成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较, 的大小,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)