题目内容
某公司招聘员工采取两次考试(笔试)的方法:第一试考选择题,共10道题(均为四选一题型),每题10分,共100分;第二试考解答题,共3题。规则是:只有在一试中达到或超过80分者才获通过并有资格参加二试,参加二试的人只有答对2题或3题才能被录用。现有甲、乙两人参加该公司的招聘考试。且已知在一试时:两人均会做10道题中的6道;对于另外4道题来说,甲有两题可排除两个错误答案、有两题完全要猜,乙有两题可排除一个错误答案、有一题可排除两个错误答案、有一题完全要猜。进入二试后,对于任意一题,甲答对的概率是、乙答对的概率是.(1)分别求甲、乙两人能通过一试进入二试的概率、;(2)求甲、乙两人都能被录用的概率.
(1), ;(2)甲、乙都能被录取的概率是.
解析试题分析:(1)两人都已稳得60分,另外至少还要得20分,所以只需考虑另外4个.这4个题中答对2个或3个或4 个均可进入第二轮,三种情况的概率相加即得.也可以求出不能进入第二轮的概率,用1减去这个概率即得能进入二轮的概率.
(2)分别求出甲、乙能被录取的概率相乘即得甲、乙都能被录取的概率.
试题解析:(1)据条件有
,所以
4分
同理 6分
(2)甲能被录取的概率是 8分
乙能被录取的概率是 10分
所以甲、乙都能被录取的概率是 12分
考点:古典概型.
练习册系列答案
相关题目
某学校的三个学生社团的人数分布如下表(每名学生只能参加一个社团):
| 围棋社 | 舞蹈社 | 拳击社 |
男生 | 5 | 10 | 28 |
女生 | 15 | 30 | m |
(Ⅰ)求拳击社团被抽出的6人中有5人是男生的概率;
(Ⅱ)设拳击社团有X名女生被抽出,求X的分布列及数学期望.