题目内容
【题目】用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,当x=3时的值,并将结果化为8进制数.
【答案】解:f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x=((((((7x+6)x+5)x+4)x+3)x+2)x+1)x,
当x=3时的值,可得
v0=7,
v1=7×3+6=27,
v2=27×3+5=86,
v3=86×3+4=262,
v4=262×3+3=789,
v5=789×3+2=2369,
v6=2369×3+1=7108,
v7=7108×3=21324.
如图所示,
21324化为8进制数为51514(8) .
【解析】利用f(x)=((((((7x+6)x+5)x+4)x+3)x+2)x+1)x,可得f(3)=21324,再利用进位制的换算方法即可得出.
【考点精析】关于本题考查的秦九韶算法,需要了解求多项式的值时,首先计算最内层括号内依次多项式的值,即v1=anx+an-1然后由内向外逐层计算一次多项式的值,把n次多项式的求值问题转化成求n个一次多项式的值的问题才能得出正确答案.
练习册系列答案
相关题目
【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第年与年销量(单位:万件)之间的关系如表:
1 | 2 | 3 | 4 | |
12 | 28 | 42 | 56 |
(Ⅰ)在图中画出表中数据的散点图;
(Ⅱ)根据(Ⅰ)中的散点图拟合与的回归模型,并用相关系数甲乙说明;
(Ⅲ)建立关于的回归方程,预测第5年的销售量约为多少?.
附注:参考数据: , , .
参考公式:相关系数,
回归方程中斜率和截距的最小二乘法估计公式分别为:
, .