题目内容
【题目】若以连续掷两次骰子分别得到的点数m、n作为点P的坐标(m,n),求:
(1)点P在直线x+y=7上的概率;
(2)点P在圆x2+y2=25外的概率.
(3)将m,n,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
【答案】
(1)解:列表如下;
1 | 2 | 3 | 4 | 5 | 6 | |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
2 | 3 | 4 | 5 | 6 | 7 | 8 |
3 | 4 | 5 | 6 | 7 | 8 | 9 |
4 | 5 | 6 | 7 | 8 | 9 | 10 |
5 | 6 | 7 | 8 | 9 | 10 | 11 |
6 | 7 | 8 | 9 | 10 | 11 | 12 |
由上表格可知,所有的点P坐标(m,n)共计36个,其中满足x+y=7的有6个,
所以P点在直线x+y=7上的概率为 = ;
(2)解:在圆x2+y2=25内的点P有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),
(2,3),(2,4)(3,1),(3,2),(3,3),(4,1),(4,2),共计13个,
在圆上的点P有(3,4),(4,3),共计2个,
上述共有15个点在圆内或圆上,可得点P在圆x2+y2=25外的概率为
1﹣ = ;
(3)解:当m=n时,它们可以都等于3、4、5、6,共计4种;
当m=5时,n=1,2,3,4,6,共计5种;
n=5时,m=1,2,3,4,6,共计5种.
综上,这三条线段能围成等腰三角形的共有4+5+5=14种.
而所有的情况共有6×6=36种,
∴这三条线段能围成等腰三角形的概率为P= =
【解析】(1)列格可知,所有的点P坐标(m,n)共计36个,其中满足x+y=7的有6个,由此求得P点在直线x+y=7上的概率.(2)用列举法求得在圆x2+y2=25内的点P13个,在圆上的点P有2个,可得共有15个点在圆内或圆外,用1减去点在圆内或圆上的概率,即得所求;(3)分类讨论求得这三条线段能围成等腰三角形的共有14种,而所有的情况共有6×6=36种,由此可得这三条线段能围成等腰三角形的概率.