题目内容
【题目】已知函数f(x)=x+ .且f(1)=5.
(1)求a的值;
(2)判断函数f(x)的奇偶性;
(3)判断函数f(x)在(2,+∞)上的单调性并用定义证明你的结论.
【答案】
(1)解:由f(1)=5,得:5=1+a∴a=4
(2)解: ∵x∈(﹣∞,0)∪(0,+∞)且 ,
∴f(x)为奇函数
(3)解:任取:2<x1<x2
∵
∵ ,
∴f(x1)﹣f(x2)<0,
∴f(x)在(2,+∞)上为增函数
【解析】(1)根据条件解方程即可.(2)根据函数奇偶性的定义进行判断即可.(3)利用函数单调性的定义进行证明即可.
【考点精析】本题主要考查了函数单调性的判断方法和函数的奇偶性的相关知识点,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;偶函数的图象关于y轴对称;奇函数的图象关于原点对称才能正确解答此题.
练习册系列答案
相关题目