题目内容

在平面直角坐标系xOy中,以原点O为极点,Ox轴为极轴建立极坐标系,曲线C1的方程为
x=
1
tan?
y=
1
tan2?
.
(φ为参数),曲线C2的极坐标方程为:ρ(cosθ+sinθ)=1,若曲线C1与C2相交于A、B两点. 
(I)求|AB|的值;  
(Ⅱ)求点M(-1,2)到A、B两点的距离之积.
分析:(I)先将两曲线的方程都化成直角坐标方程,从而有曲线C1的即y=x2;曲线C2即直线x+y-1=0,把直线的方程代入圆的方程,化简后得到一个关于x的一元二次方程,利用韦达定理即可求出|AB|的长;
(II)由(1)中的关于x的一元二次方程得到A,B两点的坐标,再利用两点间的距离公式求出点M(-1,2)到A、B两点的距离,最后再求出点M(-1,2)到A、B两点的距离之积.
解答:解:(I)曲线C1的方程为
x=
1
tan?
y=
1
tan2?
.
(φ为参数)的普通方程为y=x2
曲线C2的极坐标方程为:ρ(cosθ+sinθ)=1,的直角坐标方程为:x+y-1=0,
把直线 x+y-1代入y=x2
得x2+x-1=0,∴x1=
-1+
5
2
,x2=
-1-
5
2

∴x1+x2=-1.x1x2=-1,
∴|AB|=
(1+k2)[(x1+x2)2-4x1x2]
=
(1+1)(1+4)
=
10

(II)由(I)得A,B两点的坐标分别为A(
-1+
5
2
3-
5
2
),B(
-1-
5
2
3+
5
2
),
∴|MA|2=(
1+
5
2
2+(
1+
5
2
2,|MB|2=(
1-
5
2
2+(
1-
5
2
2
则点M到A,B两点的距离之积为|MA|•|MB|=2×
1+
5
2
×
-1+
5
2
=2.
点评:此题考查学生掌握并灵活运用直线与圆的参数方程,简单曲线的极坐标方程,两点间的距离公式等,是一道综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网