题目内容

15.设|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{37}$.

分析 由|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{(\overrightarrow{a}-\overrightarrow{b})^{2}}$,根号内展开平方后借助于数量积运算得答案.

解答 解:∵|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,
∴|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{(\overrightarrow{a}-\overrightarrow{b})^{2}}=\sqrt{|\overrightarrow{a}{|}^{2}-2|\overrightarrow{a}||\overrightarrow{b}|cos<\overrightarrow{a},\overrightarrow{b}>+|\overrightarrow{b}{|}^{2}}$
=$\sqrt{16+9-2×4×3×cos120°}$=$\sqrt{25-24×(-\frac{1}{2})}=\sqrt{37}$.
故答案为:$\sqrt{37}$.

点评 本题考查平面向量的数量积运算,注意$|\overrightarrow{a}{|}^{2}={\overrightarrow{a}}^{2}$的应用,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网