题目内容
7.计算下列各式的值.(1)(-$\frac{27}{8}$)${\;}^{-\frac{2}{3}}$+(0.002)${\;}^{-\frac{1}{2}}$-10($\sqrt{5}$-2)-1+($\sqrt{2}$-$\sqrt{3}$)0;
(2)$\frac{1}{\sqrt{5}+2}$-($\sqrt{3}$-1)0-$\sqrt{9-4\sqrt{5}}$;
(3)$\frac{\sqrt{{a}^{3}{b}^{2}\root{3}{a{b}^{2}}}}{({a}^{\frac{1}{4}}{b}^{\frac{1}{2}})^{4}{a}^{-\frac{1}{3}}{b}^{\frac{1}{3}}}$(a>0,b>0)
分析 把根式化为分数指数幂,再按照幂的运算法则进行运算即可.
解答 解:(1)原式=${(\frac{8}{27})}^{\frac{2}{3}}$+${(\frac{1000}{2})}^{\frac{1}{2}}$-10×$\frac{1}{\sqrt{5}-2}$+1
=${(\frac{2}{3})}^{3×\frac{2}{3}}$+$\sqrt{500}$-10($\sqrt{5}$+2)+1
=$\frac{4}{9}$+10$\sqrt{5}$-10$\sqrt{5}$-20+1
=-18$\frac{5}{9}$;
(2)原式=$\frac{\sqrt{5}-2}{{(\sqrt{5})}^{2}{-2}^{2}}$-1-$\sqrt{{(\sqrt{5}-2)}^{2}}$
=($\sqrt{5}$-2)-1-($\sqrt{5}$-2)
=-1;
(3)原式=$\frac{{{{{(a}^{3}b}^{2}({ab}^{2})}^{\frac{1}{3}})}^{\frac{1}{2}}}{({ab}^{2}){•a}^{-\frac{1}{3}}{•b}^{\frac{1}{3}}}$
=$\frac{{a}^{\frac{3}{2}}{•b•a}^{\frac{1}{6}}{•b}^{\frac{1}{3}}}{{a}^{\frac{2}{3}}{•b}^{\frac{7}{3}}}$
=$\frac{{a}^{\frac{5}{3}}{•b}^{\frac{4}{3}}}{{a}^{\frac{2}{3}}{•b}^{\frac{7}{3}}}$
=ab-1
=$\frac{a}{b}$.
点评 本题考查了根式化为分数指数幂的应用问题,也考查了幂的运算法则的应用问题,是基础题目.