题目内容
【题目】已知幂函数,满足.
()求函数的解析式.
()若函数,,是否存在实数使得的最小值为?
若存在,求出的值;若不存在,说明理由.
()若函数,是否存在实数,,使函数在上的值域为?若存在,求出实数的取值范围;若不存在,说明理由.
【答案】();();()
【解析】试题分析:(1)根据幂函数是幂函数,可得,求解的值,即可得到函数的解析式;
(2)由函数,利用换元法转化为二次函数问题,求解其最小值,即可求解实数的取值范围;
(3)由函数,求解的解析式,判断其单调性,根据在上的值域为,转化为方程有解问题,即可求解的取值范围.
试题解析:
()∵为幂函数,∴,∴或.
当时,在上单调递减,
故不符合题意.
当时,在上单调递增,
故,符合题意.∴.
(),
令.∵,∴,∴,.
当时,时,有最小值,
∴,.
②当时,时,有最小值.∴,(舍).
③当时,时,有最小值,
∴,(舍).∴综上.
(),
易知在定义域上单调递减,
∴,即,
令,,
则,,∴,∴,
∴.
∵,
∴,∴,∴,
∴.
∵,∴,∴,
∴ .∴.
【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的 城市和交通拥堵严重的 城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图(如图所示):
若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此 列联表,并据此样本分析是否有 的把握认为城市拥堵与认可共享单车有关:
合计 | |||
认可 | |||
不认可 | |||
合计 |
附:参考数据:(参考公式: )
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频 数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.