题目内容
【题目】如图,,P,Q是椭圆上的两点(点Q在第一象限),且直线PM,QM的斜率互为相反数.若,则直线QM的斜率为__________.
【答案】
【解析】
延长,交椭圆于点,由椭圆的对称性和直线PM,QM的斜率互为相反数可知:,设出直线的斜率,写出直线的直线方程,将直线方程与椭圆方程联立,消得到一元二次方程,结合,利用一元二次方程根与系数的关系,求出点坐标,并代入椭圆方程中,求出直线的斜率,也就能求出直线QM的斜率.
延长,交椭圆于点,由椭圆的对称性和直线PM,QM的斜率互为相反数可知:,如下图所示:
设直线的斜率为,所以直线的方程为:,与椭圆方程联立得:,消元得,,
设,根据根与系数关系可得:,
,,
所以,把代入椭圆方程中得,,解得,
所以直线QM的斜率为.
【题目】某创业者计划在某旅游景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向此创业者对该景区附近五家“农家乐”跟踪调查了100天,这五家“农家乐的收费标准互不相同得到的统计数据如下表,x为收费标准(单位:元/日),t为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x与“入住率”y的散点图如图
x | 100 | 150 | 200 | 300 | 450 |
t | 90 | 65 | 45 | 30 | 20 |
(1)若从以上五家“农家乐”中随机抽取两家深人调查,记为“入住率超过0.6的农家乐的个数,求的概率分布列
(2)z=lnx,由散点图判断与哪个更合适于此模型(给出判断即可不必说明理由)?并根据你的判断结果求回归方程(a,的结果精确到0.1)
(3)根据第(2)问所求的回归方程,试估计收费标准为多少时,100天销售额L最大?(100天销售额L=100×入住率×收费标准x)
参考数据, ,
【题目】为了解春季昼夜温差大小与某种子发芽数之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了明天昼夜温差与每天100颗种子浸泡后的发芽数,得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差x/℃ | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
从这5天中任选2天,记发芽的种子数分别为,求事件“君不小于25”的概率;
(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5填中的另三天的数据,求出关于的线性回归方程,.
(参考公式:,).