题目内容
1.点P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,(a>0,b>0)$上一点,F是右焦点,且△OPF为等腰直角三角形(O为坐标原点),则双曲线离心率的值是$\frac{{\sqrt{5}+1}}{2}$或$\frac{{\sqrt{10}+\sqrt{2}}}{2}$.分析 分类讨论,确定a,c的关系,即可求出双曲线离心率的值.
解答 解:若|OF|=|PF|,则c=$\frac{{b}^{2}}{a}$,∴ac=c2-a2,∴e2-e-1=0,∵e>1,∴e=$\frac{{\sqrt{5}+1}}{2}$;
若|OP|=|PF|=$\frac{c}{2}$,则P($\frac{c}{2}$,$\frac{c}{2}$)代入双曲线方程可得e4-3e2+1=0,
∵e>1,∴e=$\frac{{\sqrt{10}+\sqrt{2}}}{2}$.
故答案为:$\frac{{\sqrt{5}+1}}{2}$或$\frac{{\sqrt{10}+\sqrt{2}}}{2}$.
点评 本题考查双曲线离心率的值,考查分类讨论的数学思想,正确分类是关键.
练习册系列答案
相关题目
11.已知数列{an}为等比数列,a1=1,a9=3,则a5=( )
A. | 2 | B. | $\sqrt{3}$或$-\sqrt{3}$ | C. | $\sqrt{3}$ | D. | $-\sqrt{3}$ |
16.设a,b∈R,关于x,y的不等式|x|+|y|<1和ax+4by≥8无公共解,则ab的取值范围是( )
A. | [-16,16] | B. | [-8,8] | C. | [-4,4] | D. | [-2,2] |
6.已知三棱锥的底面是边长为a的正三角形,其正视图与俯视图如图所示,若侧视图的面积为$\frac{3}{4}$,三棱锥的体积为$\frac{1}{4}$,则a的值为( )
A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{3}{4}$ | D. | 1 |
10.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了若干名学生的体检表,并得到如图直方图:
(Ⅰ)若直方图中前三组的频率成等比数列,后四组的频率成等差数列,试估计全年级视力在5.0以下的人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(Ⅰ)若直方图中前三组的频率成等比数列,后四组的频率成等差数列,试估计全年级视力在5.0以下的人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
年级名次 是否近视 | 1~50 | 951~1000 |
近视 | 41 | 32 |
不近视 | 9 | 18 |
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |