题目内容

1.已知点A(0,2),圆O:x2+y2=1.
(Ⅰ)求经过点A与圆O相切的直线方程;
(Ⅱ)若点P是圆O上的动点,求$\overrightarrow{OP}•\overrightarrow{AP}$的取值范围.

分析 (1)由已知中直线过点A我们可以设出直线的点斜式方程,然后化为一般式方程,代入点到直线距离公式,根据直线与圆相切,圆心到直线的距离等于半径,可以求出k值,进而得到直线的方程;
(2)设出P点的坐标,借助坐标来表示两个向量的数量积,再根据P在圆上的条件,进而得到结论.

解答 (本小题满分10分)
解:( I)由题意,所求直线的斜率存在.
设切线方程为y=kx+2,即kx-y+2=0,-------------(1分)
所以圆心O到直线的距离为$d=\frac{2}{{\sqrt{{k^2}+1}}}$,-------------(3分)
所以$d=\frac{2}{{\sqrt{{k^2}+1}}}=1$,解得$k=±\sqrt{3}$,-------------(4分)
所求直线方程为$y=\sqrt{3}x+2$或$y=-\sqrt{3}x+2$.-------------(5分)
( II)设点P(x,y),
所以 $\overrightarrow{OP}=(x,y)$,$\overrightarrow{AP}=(x,y-2)$,-------------(6分)
所以 $\overrightarrow{OP}•\overrightarrow{AP}={x^2}+{y^2}-2y$.-------------(7分)
因为点P在圆上,所以x2+y2=1,所以$\overrightarrow{OP}•\overrightarrow{AP}=1-2y$.-------------(8分)
又因为x2+y2=1,所以-1≤y≤1,-------------(9分)
所以$\overrightarrow{OP}•\overrightarrow{AP}∈[-1,3]$.-------------(10分)

点评 本题考查的知识是直线和圆的方程的应用,其中熟练掌握直线与圆不同位置关系时,点到直线的距离与半径的关系是关键,还考查了向量数量积的坐标表示.

练习册系列答案
相关题目
6.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”,类似的,我们在平面向量集D={$\overrightarrow{a}$|$\overrightarrow{a}$=(x,y),x∈R,y∈R}上也可以定义一个称“序”的关系,记为“>>”.定义如下:对于任意两个向量$\overrightarrow{{a}_{1}}$=(x1,y1),$\overrightarrow{{a}_{2}}$=(x2,y2),“$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{2}}$”当且仅当“x1>x2”或“x1=x2且y1>y2”.按上述定义的关系“>>”,给出如下四个命题:
①若$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),$\overrightarrow{0}$=(0,0),则$\overrightarrow{{e}_{1}}$>>$\overrightarrow{{e}_{2}}$>>$\overrightarrow{0}$;  
②若$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{2}}$>>$\overrightarrow{{a}_{3}}$,则$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{3}}$;
③若$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{2}}$,则对于任意$\overrightarrow{a}$∈D,$\overrightarrow{{a}_{1}}$+$\overrightarrow{a}$>>$\overrightarrow{{a}_{2}}$+$\overrightarrow{a}$; 
④对于任意向量$\overline{a}$>>$\overrightarrow{0}$,$\overrightarrow{0}$=(0,0),若$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{2}}$,则$\overrightarrow{{a}_{1}}$•$\overrightarrow{a}$>$\overrightarrow{{a}_{2}}$•$\overrightarrow{a}$.
其中正确命题的个数为(  )
A.1个B.2个C.3个D.4个

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网