题目内容

13.已知$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1,A(1,3)在双曲线右支上有一点P,求|PA|+|PF1|的最小值.(F1为其左焦点)

分析 依题意,可求得F1(-4,0),F2(4,0),P在双曲线的右支上,利用双曲线的定义|PF1|-|PF2|=4,可求得|PF1|=|PF2|+4,从而可求得|PF1|+|PA|的最小值.

解答 解:∵P在双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的右支上,
∴|PF1|-|PF2|=2a=4,
∴|PF1|=|PF2|+4,
又A(1,3),双曲线右焦点F2(4,0),
∴|PF1|+|PA|
=|PF2|+4+|PA|
≥|AF2|+4
=$\sqrt{(4-1)^{2}+(0-3)^{2}}$+4
=4+3$\sqrt{2}$(当且仅当A、P、F2三点共线时取“=”).
则|PA|+|PF1|的最小值为4+3$\sqrt{2}$.

点评 本题考查双曲线的简单性质,利用双曲线的定义将|PF1|转化为|PF2|+4是关键,考查转化思想与应用不等式的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网