题目内容

12.化简:$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-3}{2+2co{s}^{2}(π+θ)+cos(-θ)}$.

分析 原式利用诱导公式化简,再利用同角三角函数间基本关系变形,约分即可得到结果.

解答 解:原式=$\frac{2co{s}^{3}θ+si{n}^{2}θ+cosθ-3}{2+2co{s}^{2}θ+cosθ}$=$\frac{2co{s}^{3}θ+si{n}^{2}θ+cosθ-3}{2+2co{s}^{2}θ+cosθ}$=$\frac{2co{s}^{3}θ-co{s}^{2}θ+cosθ-2}{2+2co{s}^{2}θ+cosθ}$=$\frac{(2co{s}^{2}θ+cosθ+2)(cosθ-1)}{2+2co{s}^{2}θ+cosθ}$=cosθ-1.

点评 此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网