题目内容

【题目】双曲线的左、右焦点分别是,抛物线的焦点与点重合,点是抛物线与双曲线的一个交点,如图所示.

(1)求双曲线及抛物线的标准方程;

(2)设直线与双曲线的过一、三象限的渐近线平行,且交抛物线于两点,交双曲线于点若点是线段的中点,求直线的方程.

【答案】(1)(2)

【解析】分析:(1)先根据M坐标求p,得焦点坐标,再将M坐标代入双曲线方程,联立方程组解得a,b,(2)先求渐近线方程,设直线方程,分别与抛物线方程、双曲线方程联立方程组,利用韦达定理以及中点坐标公式列方程,解得直线的方程.

详解:

(1) 代入

解得

因为焦点为

所以,双曲线的焦点在轴上

代入

所以 (舍去)

所以

所以她物线的标准方程为

曲线的标准方程为

(2)渐近线

设直线

别消去

代入

,解得,经验证,不合题意,故舍去.

所以

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网