题目内容

【题目】已知奇函数
(1)在直角坐标系中画出y=f(x)的图象,并指出函数的单调区间;
(2)若函数f(x)在区间[﹣1,a﹣2]上单调递增,试确定a的取值范围.

【答案】
(1)解:如图:单调区间为:(﹣∞,﹣1),(﹣1,1),(1,+∞)


(2)解:由函数图象可知,函数在(﹣1,1)上递增,

要使函数在区间[﹣1,a﹣2]上单调递增,

∴﹣1<a﹣2≤1,

解得1<a≤3,

a的取值范围为(1,3]


【解析】(1)根据分段函数的特点,画图即可,由图象可得函数的单调区间,(2)结合图象以及在区间[﹣1,a﹣2]上单调递增,即可求出a的取值范围.
【考点精析】利用函数的单调性对题目进行判断即可得到答案,需要熟知注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网