题目内容
【题目】已知数列的前项和为,且满足;数列的前项和为,且满足, , .
(1)求数列、的通项公式;
(2)是否存在正整数,使得恰为数列中的一项?若存在,求所有满足要求的;若不存在,说明理由.
【答案】(1), (2)满足要求的为, .
【解析】试题分析:(1)由和项与通项关系得,根据等比数列定义及通项公式可得,由叠乘法可得,再由和项与通项关系得,根据等差数列定义及通项公式可得(2)先研究数列增减性: ,再研究确定可能情况:2,3,7,即得满足要求的
试题解析:解:(1)因为,所以当时, ,
两式相减得,即,又,则,
所以数列是以为首项,2为公比的等比数列,故.
由得, , ,…, , ,
以上个式子相乘得,即①,当时, ②,
两式相减得,即(),
所以数列的奇数项、偶数项分别成等差数列,
又,所以,则,
所以数列是以为首项,1为公差的等差数列,因此数列的通项公式为
(2)当时, 无意义,
设(, ),显然.
则 ,即.
显然,所以,
所以存在,使得, ,
下面证明不存在,否则,即,
此式右边为3的倍数,而不可能是3的倍数,故该式不成立.
综上,满足要求的为, .
【题目】2016年入冬以来,各地雾霾天气频发, 频频爆表(是指直径小于或等于2.5微米的颗粒物),各地对机动车更是出台了各类限行措施,为分析研究车流量与的浓度是否相关,某市现采集周一到周五某一时间段车流量与的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量(万辆) | 50 | 51 | 54 | 57 | 58 |
的浓度(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(1)请根据上述数据,在下面给出的坐标系中画出散点图;
(2)试判断与是否具有线性关系,若有请求出关于的线性回归方程,若没有,请说明理由;
(3)若周六同一时间段的车流量为60万辆,试根据(2)得出的结论,预报该时间段的的浓度(保留整数).
参考公式: , .