题目内容
【题目】已知定义在上的奇函数.
(Ⅰ) 求的值;
(Ⅱ) 若存在,使不等式有解,求实数的取值范围;
(Ⅲ)已知函数满足,且规定,若对任意,不等式恒成立,求实数的最大值.
【答案】(Ⅰ);(Ⅱ);(Ⅲ)6.
【解析】
(Ⅰ)定义在上的奇函数,所以利用特殊值求解,然后检验即可. (Ⅱ)首先根据定义证明函数在上单调递减,然后再根据单调性将等价转化为有解,即,求二次函数的最小值,即可解出实数的取值范围. (Ⅲ)首先根据,,解出,代入得到解析式,令,(),则,利用基本不等式求最值求出.
(Ⅰ)是上的奇函数,,
,
当时,,
此时是奇函数成立.
;
(Ⅱ)任取且,
,
,
上为减函数.
若存在,使不等式有解,则有解
,当时,, ,
(Ⅲ),
,
,
,且也适合,
,
任意,不等式恒成立,
,
令,
令,
任取且,
,
当时,,上为增函数.
当时,,上为减函数.
时即,
,
,
,
,且,
,同理在上是增函数,在上是减函数.
时,的最大值为6.
【题目】基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验.某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:
月份 | 2017.8 | 2017.9 | 2017.10 | 2017.11 | 2017.12 | 2018.1 |
月份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
市场占有率 | 11 | 13 | 16 | 15 | 20 | 21 |
(1)请在给出的坐标纸中作出散点图,并用相关系数说明可用线性回归模型拟合月度市场占有率与月份代码之间的关系;
(2)求关于的线性回归方程,并预测该公司2018年2月份的市场占有率;
(3)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的两款车型报废年限各不相同.考虑到公司的经济效益,该公司决定先对两款单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:
经测算,平均每辆单车每年可以为公司带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据.如果你是该公司的负责人,你会选择采购哪款车型?
参考数据: , , .
参考公式:相关系数;
回归直线方程为,其中, .