题目内容
【题目】设椭圆的左顶点为,且椭圆与直线相切,
(1)求椭圆的标准方程;
(2)过点的动直线与椭圆交于两点,设为坐标原点,是否存在常数,使得?请说明理由.
【答案】(1)(2)-7
【解析】试题分析:
(1)利用题意求得,则椭圆的标准方程为
(2)当直线斜率存在时,联立直线与椭圆方程进行讨论,注意讨论直线不存在的情况,综上可得当时,
试题解析:
(1)根据题意可知,所以,
由椭圆与直线相切,联立得,
消去可得: ,
即,
解得: (舍)或
所以椭圆的标准方程为
(2)当过点的直线的斜率存在时,设直线的方程为,设两点的坐标分别为,
联立得,化简,
所以,
所以
,
所以当时,
当过点的直线的斜率不存在时,直线即与轴重合,此时,所以
,
所以当时, ,
综上所述,当时,
【题目】“特罗卡”是靶向治疗肺癌的一种药物,为了研究其疗效,医疗专家借助一些肺癌患者,进行人体试验,得到如右丢失一些数据的2×2列联表:
疫苗效果试验列
感染 | 未感染 | 总计 | |
没服用 | 20 | 30 | 50 |
服用 | X | y | 50 |
总计 | M | N | 100 |
设从没服用该药物的肺癌患者中任选两人,未感染人数为ξ;从服用该药物的肺癌患者中任选两人,未感染人数为η,研究人员曾计算过得出:P(ξ=0)= P(η=0).
(1)求出列联表中数据x,y,M,N的值.
(2)能否有97.5%的把握认为该药物对治疗肺癌有疗效吗?
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
注:K2= .
【题目】如表中给出了2011年~2015年某市快递业务总量的统计数据(单位:百万件)
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
快递业务总量 | 34 | 55 | 71 | 85 | 105 |
(1)在图中画出所给数据的折线图;
(2)建立一个该市快递量y关于年份代码x的线性回归模型;
(3)利用(2)所得的模型,预测该市2016年的快递业务总量.
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:
斜率: ,纵截距: .
【题目】PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量x(万辆) | 50 | 51 | 54 | 57 | 58 |
PM2.5的浓度y(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(1)根据上表数据,请在如图坐标系中画出散点图;
(2)根据上表数据,用最小二乘法求出y关于x的线性回归方程 ;(保留2位小数)
(3)若周六同一时间段车流量是25万辆,试根据(2)求出的线性回归方程预测,此时PM2.5的浓度为多少(保留整数)?
参考公式: = , = ﹣ .