题目内容
(09年青岛质检理)(12分)
已知均在椭圆上,直线、分别过椭圆的左右焦点、,当时,有.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆上的任一点,为圆的任一条直径,求的最大值.
解析:(Ⅰ)因为,所以有
所以为直角三角形;…………………………2分
则有
所以,…………………………3分
又,………………………4分
在中有
即,解得
所求椭圆方程为…………………………6分
(Ⅱ)
从而将求的最大值转化为求的最大值…………………………8分
是椭圆上的任一点,设,则有即
又,所以………………………10分
而,所以当时,取最大值
故的最大值为…………………………12分
练习册系列答案
相关题目