题目内容
10.函数f(x)=$\frac{1}{4}$x4-$\frac{2}{3}$x3-6的极值点是x=2.分析 先求出函数的导数,从而求出函数的极值点.
解答 解:f′(x)=x3-2x2,
令f′(x)>0,解得:x>2,
令f′(x)<0,解得:x<2,
∴函数f(x)在(-∞,2)递减,在(2,+∞)递增,
∴x=2是函数的极值点,
故答案为:x=2.
点评 本题考查了函数的极值点的问题,考查导数的应用,要注意x=0不是函数的极值点,本题是一道基础题.
练习册系列答案
相关题目
20.等边三角形ABC的边长为1,$\overrightarrow{BC}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b,\overrightarrow{AB}=\overrightarrow c$,那么$\overrightarrow a•\overrightarrow b+\overrightarrow b•\overrightarrow c+\overrightarrow{c•}\overrightarrow a$等于( )
A. | $\frac{1}{2}$ | B. | 3 | C. | -$\frac{3}{2}$ | D. | $\frac{3}{2}$ |
1.在研究高血压与患心脏病的关系调查中,调查高血压患者30人,其中有20人患心脏病,调查不患高血压的80人中,有30人患心脏病.
(Ⅰ)根据以上数据建立一个2×2的列联表;
(Ⅱ)判断高血压与患心脏病之间在多大程度上有关系?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
(Ⅰ)根据以上数据建立一个2×2的列联表;
(Ⅱ)判断高血压与患心脏病之间在多大程度上有关系?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2>k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
18.设数列{an}中,已知a1=1,an=1+$\frac{1}{{{a_{n-1}}}}$(n>1),则a3=( )
A. | $\frac{8}{5}$ | B. | $\frac{5}{3}$ | C. | $\frac{3}{2}$ | D. | 2 |
5.曲线f(x)=x+2xlnx在点(1,1)处的切线的斜率等于( )
A. | 3 | B. | 3+2ln2 | C. | 1+2ln2 | D. | 3+ln2 |