题目内容
已知函数f(x)=若方程f(x)=k无实数根,则实数k的取值范围是 .
(-∞,lg)
【解析】在同一坐标系内作出函数y=f(x)与y=k的图象,如图所示,若两函数图象无交点,则k<lg.
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sin θ,ρcos =2.
(1)求C1与C2交点的极坐标;
(2)设P为C1的圆心,Q为C1与C2交点连线的中点.已知直线PQ的参数方程为 (t∈R为参数),求a,b的值.
已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其函数对应关系如下表:
则方程g(f(x))=x的解集为____________.
设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(x)=f()的所有x之和为( )
(A)-3 (B)3 (C)-8 (D)8
设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是( )
(A)f(x)+|g(x)|是偶函数
(B)f(x)-|g(x)|是奇函数
(C)|f(x)|+g(x)是偶函数
(D)|f(x)|-g(x)是奇函数
若函数f(x)=log3(x2-2ax+5)在区间(-∞,1]上单调递减,则a的取值范围是( )
(A)[1,+∞) (B)(1,+∞)
(C)[1,3) (D)[1,3]
函数f(x)=1+log2x,f(x)与g(x)=21-x在同一直角坐标系下的图象大致是( )
函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是( )
(A)(-∞,0],(-∞,1] (B)(-∞,0],[1,+∞)
(C)[0,+∞),(-∞,1] (D)[0,+∞),[1,+∞)
下列命题中是真命题的是( )
(A)x∈R,使得sinxcosx=
(B)x∈(-∞,0),2x>1
(C)x∈R,x2≥x+1
(D)x∈(0,),tanx>sinx