题目内容
函数部分图象可以为( )
A. |
B. |
C. |
D. |
A
解析试题分析:易知函数为偶函数,排除C、D选项;当,,则,排除B选项,故选A.
考点:1.函数的奇偶性;2.函数的图象
练习册系列答案
相关题目
偶函数满足,且在时,,则关于的方程在上的根的个数是
A.3 | B.4 | C.5 | D.6 |
观察,,,由归纳推理可得:若定义在上的函数满足,记为的导函数,则=( )
A. | B.- | C. | D.- |
没函数的定义域为R,若存在常数M>0,使对一切实数x均成 立,则称为“倍约束函数”,现给出下列函数:①:②:③;④ ⑤是定义在实数集R上的奇函数,且
对一切均有,其中是“倍约束函数”的有( )
A.1个 | B.2个 | C.3个 | D.4个 |
已知函数y=ax2+bx+c(a≠0)的图象经过(-1,3)和(1,1)两点,若0<c<1,则a的取值范围是 ( )
A.(1,3) | B.(1,2) |
C.[2,3) | D.[1,3] |
设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是( )
A.f(x)+|g(x)|是偶函数 |
B.f(x)-|g(x)|是奇函数 |
C.|f(x)|+g(x)是偶函数 |
D.|f(x)|-g(x)是奇函数 |
设,则( )
A.﹣2<x<﹣1 | B.﹣3<x<﹣2 |
C.﹣1<x<0 | D.0<x<1 |
已知是定义在R上的偶函数,且在[0,+)上单调递增,则满足f(m)<f(1)的实数m的范围是
A.l<m<0 | B.0<m<1 |
C.l<m<1 | D.l≤m≤1 |