题目内容
3.一个几何体的三视图如图所示,则该几何体的体积的是( )A. | $\frac{47}{6}$ | B. | $\frac{23}{3}$ | C. | $\frac{15}{2}$ | D. | 7 |
分析 由已知的三视图可得:该几何体是一个正方体截去一个三棱锥所得的组合体,分别计算体积后,相减可得答案.
解答 解:由已知的三视图可得:该几何体是一个正方体截去一个三棱锥所得的组合体,
正方体的棱长为2,故体积为:2×2×2=8,
三棱锥的底面是一个直角边长为1的等腰直角三角形,高为1,故体积为:$\frac{1}{3}$×$\frac{1}{2}$×1×1×1=$\frac{1}{6}$,
故几何体的体积V=8-$\frac{1}{6}$=$\frac{47}{6}$,
故选:A
点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
练习册系列答案
相关题目
11.设f(x)是定义在R上周期为2的偶函数,当x∈[0,1]时,f(x)=x,若在区间(-2,+∞)内,函数h(x)=f(x)-loga(x+2)恰有3个零点,则a的取值范围是( )
A. | (1,3) | B. | (2,4) | C. | (3,5) | D. | (5,7) |
8.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|为( )
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{2}$ |
13.已知双曲线C:x2-$\frac{{y}^{2}}{3}$=1,则C的顶点到其渐近线的距离等于( )
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |