题目内容
18.已知函数f(x)=|2x+1|-|x-4|(1)解关于x的不等式 f(x)>2
(2)若不等式$f(x)≥ax+\frac{a}{2}-\frac{7}{2}$恒成立,求实数a的取值范围.
分析 (1)分类讨论,去掉绝对值,再解不等式即可;
(2)利用函数的图象,可得实数a的取值范围.
解答 解:(1)x≤-$\frac{1}{2}$时,不等式化为-x-5>2,可得x<-7;
-$\frac{1}{2}$<x<4时,不等式化为3x-3>2,可得$\frac{5}{3}$<x<4;
x≥4时,不等式化为x+5>2,可得x≥4;
∴不等式解集为$({-∞,-7})∪({\frac{5}{3},+∞})$…(5分)
(2)$f(x)=\left\{\begin{array}{l}{x+5}&{x≥4}&{\;}\\{3x-3}&{-\frac{1}{2}<x<4}&{\;}\\{-x-5}&{x≤-\frac{1}{2}}&{\;}\end{array}$
y=ax+$\frac{a}{2}$-$\frac{7}{2}$恒过(-0.5,-3.5)
所以由函数的图象可得-1≤a≤1
点评 本题考查不等式的解法,考查数形结合的数学思想,属于中档题.
练习册系列答案
相关题目
8.若存在满足$\frac{1}{x}+\frac{m}{y}$=1(m>0,且m为常量)的变量x,y(x>0,y>0)使得表达式x+y-$\sqrt{{x}^{2}+{y}^{2}}$的最大值,则m的取值范围是( )
A. | ($\frac{1}{2}$,2) | B. | ($\frac{1}{3}$,3) | C. | [1,3] | D. | [$\frac{1}{4}$,1] |
6.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2渐近线分别为l1,l2,位于第一象限的点P在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是( )
A. | $\sqrt{5}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{2}$ |
3.一个几何体的三视图如图所示,则该几何体的体积的是( )
A. | $\frac{47}{6}$ | B. | $\frac{23}{3}$ | C. | $\frac{15}{2}$ | D. | 7 |
10.如图,已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,|F1F2|=8,P是双曲线右支上的一点,直线F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=2,则该双曲线的离心率为( )
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
7.设P是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上的任意一点,已知A(a,b),B(a,-b),若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(O为坐标原点),则λ2+μ2的最小值为( )
A. | $\frac{1}{4}$ab | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ab | D. | $\frac{1}{2}$ |