题目内容

15.已知数列{an}满足a1=1,点(an,an+1)在直线y=2x+1上.数列{bn}满足b1=a1,${b_n}={a_n}(\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{n-1}}}})$(n≥2且n∈N*).
(Ⅰ)(i)求{an}的通项公式;(ii)证明:$\frac{{1+{b_n}}}{{{b_{n+1}}}}=\frac{a_n}{{{a_{n+1}}}}$(n≥2且n∈N*);
(Ⅱ)求证:$({1+\frac{1}{b_1}})({1+\frac{1}{b_2}})…({1+\frac{1}{b_n}})<\frac{10}{3}$.

分析 (I)(i)将点(an,an+1)代入直线方程,化简可得${a_n}={2^n}-1$;
(ii)由bn与an的关系可得$\frac{b_n}{a_n}=\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{n-1}}}}$,再将$\frac{{b}_{n+1}}{{a}_{n+1}}$写成$\frac{{b}_{n}}{{a}_{n}}+\frac{1}{{a}_{n}}$即可;
(II)由已知条件,结合(I),通过化简得${T_n}=({1+\frac{1}{b_1}})({1+\frac{1}{b_2}})…({1+\frac{1}{b_n}})$=$2(\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{n-1}}}}+\frac{1}{a_n})$,通过变换、裂项得$\frac{1}{a_k}=\frac{1}{{{2^k}-1}}$<$2(\frac{1}{{{2^k}-1}}-\frac{1}{{{2^{k+1}}-1}})$,所以$\frac{1}{2}{T}_{n}<\frac{5}{3}$,从而命题成立.

解答 证明:(I)(i)∵点(an,an+1)在直线y=2x+1上,
∴an+1=2an+1,从而an+1+1=2(an+1),
∴${a_n}+1={2^{n-1}}({{a_1}+1})={2^n}$,所以${a_n}={2^n}-1$;
(ii)∵${b_n}={a_n}(\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{n-1}}}})$
∴$\frac{b_n}{a_n}=\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{n-1}}}}$,
$\frac{{{b_{n+1}}}}{{{a_{n+1}}}}=\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{n-1}}}}+\frac{1}{a_n}$,
从而有$\frac{{{b_{n+1}}}}{{{a_{n+1}}}}=\frac{b_n}{a_n}+\frac{1}{a_n}=\frac{{1+{b_n}}}{a_n}$,
所以$\frac{{1+{b_n}}}{{{b_{n+1}}}}=\frac{a_n}{{{a_{n+1}}}}$成立;
(II)由(I)可知,b1=a1=1,b2=a2=3,当n≥2时,$\frac{{1+{b_n}}}{{{b_{n+1}}}}=\frac{a_n}{{{a_{n+1}}}}$.
则${T_n}=({1+\frac{1}{b_1}})({1+\frac{1}{b_2}})…({1+\frac{1}{b_n}})$
=$\frac{{1+{b_1}}}{b_1}•\frac{{1+{b_2}}}{b_2}•\frac{{1+{b_3}}}{b_3}…\frac{{1+{b_n}}}{b_n}$
=$\frac{{1+{b_1}}}{{{b_1}{b_2}}}•\frac{{1+{b_2}}}{b_3}•\frac{{1+{b_3}}}{b_4}…\frac{{1+{b_n}}}{{{b_{n+1}}}}•{b_{n+1}}$
=$\frac{{1+{b_1}}}{{{b_1}{b_2}}}•\frac{a_2}{a_3}•\frac{a_3}{a_4}…\frac{a_n}{{{a_{n+1}}}}•{b_{n+1}}$
=$\frac{{(1+{b_1}){a_2}}}{{{b_1}{b_2}}}•\frac{{{b_{n+1}}}}{{{a_{n+1}}}}$
=$2•\frac{{{b_{n+1}}}}{{{a_{n+1}}}}$
=$2(\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{n-1}}}}+\frac{1}{a_n})$,
又∵$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{n-1}}}}+\frac{1}{a_n}$=$1+\frac{1}{3}+…+\frac{1}{{{2^{n-1}}-1}}+\frac{1}{{{2^n}-1}}$,
∴$\frac{1}{a_k}=\frac{1}{{{2^k}-1}}$
=$\frac{{{2^{k+1}}-1}}{{({2^k}-1)({{2^{k+1}}-1})}}$
$<\frac{{{2^{k+1}}}}{{({2^k}-1)({{2^{k+1}}-1})}}$
=$2•\frac{{({2^{k+1}}-1)-({2^k}-1)}}{{({2^k}-1)({{2^{k+1}}-1})}}$
=$2(\frac{1}{{{2^k}-1}}-\frac{1}{{{2^{k+1}}-1}})$(其中k=2,3,4,…,n),
∴$\frac{1}{2}{T_n}=\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{n-1}}}}+\frac{1}{a_n}$
$<1+2[{({\frac{1}{{{2^2}-1}}-\frac{1}{{{2^3}-1}}})+({\frac{1}{{{2^3}-1}}-\frac{1}{{{2^4}-1}}})+…+({\frac{1}{{{2^n}-1}}-\frac{1}{{{2^{n+1}}-1}}})}]$
$<1+2({\frac{1}{{{2^2}-1}}-\frac{1}{{{2^{n+1}}-1}}})<1+\frac{2}{3}=\frac{5}{3}$,
所以有$({1+\frac{1}{b_1}})({1+\frac{1}{b_2}})…({1+\frac{1}{b_n}})={T_n}<\frac{10}{3}$成立.

点评 本题考查数列与不等式的综合应用,合理的递推关系式、巧妙的等量变换及采用裂项相消恰当放缩是解题的关键,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网