题目内容
【题目】如图,在三棱锥中, 底面分别是的中点, 在,且.
(1)求证: 平面;
(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;
若不存在,请说明理由.
【答案】(1)证明见解析;(2)存在.
【解析】试题分析:(1)通过证明AF与平面SBC内的两条相交直线垂直即可;
(2)建立空间直角坐标系,由,所以,求得平面的法向量为,平面的法向量为,由二面角的大小为,得,化简得,又,求得即.
试题解析:
(1)由,
是的中点,得,
因为底面,所以,
在中, ,所以,
因此,又因为,
所以,
则,即,因为底面,
所以,又,
又,所以平面.
(2)假设满足条件的点,存在,
并设,以为坐标原点,分别以为轴建立空间之间坐标系,
则,
由,所以,所以,
设平面的法向量为,
则 ,取,得,
即,设平面的法向量为,
则 ,取,得,
即,
由二面角的大小为,得,
化简得,又,求得,于是满足条件的点存在,且.
练习册系列答案
相关题目