题目内容
【题目】已知函数.
(1)求证:函数有唯一零点;
(2)若对任意,恒成立,求实数的取值范围.
【答案】(1)见解析;(2).
【解析】试题分析:(1)求出 ,先证明在区间上为增函数,又,,所以在区间上恰有一个零点,而在上恒成立,在上无零点,从而可得结果;(2))设的零点为,即. 原不等式可化为,令若,可得,等式左负右正不相等,若,等式左正右负不相等,只能,,即求所求.
试题解析:(1) ,
易知在上为正,因此在区间上为增函数,又,
因此,即在区间上恰有一个零点,
由题可知在上恒成立,即在上无零点,
则在上存在唯一零点.
(2)设的零点为,即. 原不等式可化为,
令,则,由(1)可知在上单调递减,
在上单调递增,故只求,,设,
下面分析,设,则,
可得,即
若,等式左负右正不相等,若,等式左正右负不相等,只能.
因此,即求所求.
练习册系列答案
相关题目
【题目】依据某地某条河流8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示;依据当地的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.
试估计该河流在8月份水位的中位数;
(1)以此频率作为概率,试估计该河流在8月份发生1级灾害的概率;
(2)该河流域某企业,在8月份,若没受1、2级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.
现此企业有如下三种应对方案:
方案 | 防控等级 | 费用(单位:万元) |
方案一 | 无措施 | 0 |
方案二 | 防控1级灾害 | 40 |
方案三 | 防控2级灾害 | 100 |
试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.