题目内容

【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点EF,且EF=.则下列结论中正确的个数为

①AC⊥BE

②EF∥平面ABCD

三棱锥A﹣BEF的体积为定值;

的面积与的面积相等,

A.4B.3C.2D.1

【答案】B

【解析】

试题AC⊥BE,由题意及图形知,AC⊥DD1B1B,故可得出AC⊥BE,此命题正确;②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确;由图形可以看出,B到线段EF的距离与AEF的距离不相等,故△AEF的面积与△BEF的面积相等不正确

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网