ÌâÄ¿ÄÚÈÝ

8£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáΪÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÇúÏߦÑ=cos¦È+1Óë¦Ñcos¦È=1µÄ¹«¹²µãµ½¼«µãµÄ¾àÀ룻
£¨2£©ÍÖÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=acos¦È}\\{y=bsin¦È}\end{array}\right.$£¨¦ÕΪ²ÎÊý£¬a£¾b£¾0£©£¬Ö±ÏßlÓëÔ²OµÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{2}}{2}$m£¨mΪ·ÇÁã³£Êý£©Óë¦Ñ=b£¬ÈôÖ±Ïßl¾­¹ýÍÖÔ²CµÄ½¹µã£¬ÇÒÓëÔ²OÏàÇУ¬ÇóÍÖÔ²CµÄÀëÐÄÂÊ£®

·ÖÎö £¨1£©ÁªÁ¢¦Ñ=cos¦È+1Óë¦Ñcos¦È=1Ïûµô¦È¼´¿ÉÇóµÃ¦Ñ£¬¼´Îª´ð°¸£»
£¨2£©Ïȸù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄת»»¹Øϵ½«Ö±ÏßlµÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{2}}{2}$m£¨mΪ·ÇÁã³£Êý£©»¯³ÉÖ±½Ç×ø±ê·½³Ì£¬ÔÙÀûÓÃÖ±Ïßl¾­¹ýÍÖÔ²CµÄ½¹µã£¬ÇÒÓëÔ²OÏàÇУ¬´Ó¶øµÃµ½c=$\sqrt{2}$b£¬ÓÖb2=a2-c2£¬ÏûÈ¥bºóµÃµ½¹ØÓÚa£¬cµÄµÈʽ£¬¼´¿ÉÇó³öÍÖÔ²CµÄÀëÐÄÂÊ£®

½â´ð ½â£º£¨1£©ÓɦÑ=cos¦È+1µÃ£¬cos¦È=¦Ñ-1£¬´úÈë¦Ñcos¦È=1µÃ¦Ñ£¨¦Ñ-1£©=1£¬
½âµÃ¦Ñ=$\frac{\sqrt{5}+1}{2}$»ò¦Ñ=$\frac{1-\sqrt{5}}{2}$£¨Éᣩ£¬
¡àÇúÏߦÑ=cos¦È+1Óë¦Ñcos¦È=1µÄ¹«¹²µãµ½¼«µãµÄ¾àÀëΪ$\frac{\sqrt{5}+1}{2}$£»
£¨2£©Ö±ÏßlµÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{2}}{2}$m£¨mΪ·ÇÁã³£Êý£©»¯³ÉÖ±½Ç×ø±ê·½³ÌΪx+y-m=0£¬
ËüÓëxÖáµÄ½»µã×ø±êΪ£¨m£¬0£©£¬ÓÉÌâÒâÖª£¬£¨m£¬0£©ÎªÍÖÔ²µÄ½¹µã£¬¹Ê|m|=c£¬
ÓÖÖ±ÏßlÓëÔ²O£º¦Ñ=bÏàÇУ¬¡à$\frac{|-m|}{\sqrt{2}}$=b£¬
´Ó¶øc=$\sqrt{2}$b£¬ÓÖb2=a2-c2£¬
¡àc2=2£¨a2-c2£©£¬
¡à3c2=2a2£¬¡à$\frac{c}{a}=\frac{\sqrt{6}}{3}$£®
ÔòÍÖÔ²CµÄÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£®

µãÆÀ ±¾Ì⿼²éÁ½µã¼ä¾àÀ빫ʽ¡¢¼«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯£¬¿¼²éÁËÍÖÔ²µÄÀëÐÄÂÊ£¬¿¼²éÁ˲ÎÊý·½³Ì»¯³ÉÆÕͨ·½³Ì£¬µãµÄ¼«×ø±êºÍÖ±½Ç×ø±êµÄ»¥»¯£¬¿¼²éѧÉú·ÖÎöÎÊÌâµÄÄÜÁ¦£¬Êô»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø