ÌâÄ¿ÄÚÈÝ
8£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔÔµãOΪ¼«µã£¬ÒÔxÖáΪÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®£¨1£©ÇóÇúÏߦÑ=cos¦È+1Óë¦Ñcos¦È=1µÄ¹«¹²µãµ½¼«µãµÄ¾àÀ룻
£¨2£©ÍÖÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=acos¦È}\\{y=bsin¦È}\end{array}\right.$£¨¦ÕΪ²ÎÊý£¬a£¾b£¾0£©£¬Ö±ÏßlÓëÔ²OµÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{2}}{2}$m£¨mΪ·ÇÁã³£Êý£©Óë¦Ñ=b£¬ÈôÖ±Ïßl¾¹ýÍÖÔ²CµÄ½¹µã£¬ÇÒÓëÔ²OÏàÇУ¬ÇóÍÖÔ²CµÄÀëÐÄÂÊ£®
·ÖÎö £¨1£©ÁªÁ¢¦Ñ=cos¦È+1Óë¦Ñcos¦È=1Ïûµô¦È¼´¿ÉÇóµÃ¦Ñ£¬¼´Îª´ð°¸£»
£¨2£©Ïȸù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄת»»¹Øϵ½«Ö±ÏßlµÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{2}}{2}$m£¨mΪ·ÇÁã³£Êý£©»¯³ÉÖ±½Ç×ø±ê·½³Ì£¬ÔÙÀûÓÃÖ±Ïßl¾¹ýÍÖÔ²CµÄ½¹µã£¬ÇÒÓëÔ²OÏàÇУ¬´Ó¶øµÃµ½c=$\sqrt{2}$b£¬ÓÖb2=a2-c2£¬ÏûÈ¥bºóµÃµ½¹ØÓÚa£¬cµÄµÈʽ£¬¼´¿ÉÇó³öÍÖÔ²CµÄÀëÐÄÂÊ£®
½â´ð ½â£º£¨1£©ÓɦÑ=cos¦È+1µÃ£¬cos¦È=¦Ñ-1£¬´úÈë¦Ñcos¦È=1µÃ¦Ñ£¨¦Ñ-1£©=1£¬
½âµÃ¦Ñ=$\frac{\sqrt{5}+1}{2}$»ò¦Ñ=$\frac{1-\sqrt{5}}{2}$£¨Éᣩ£¬
¡àÇúÏߦÑ=cos¦È+1Óë¦Ñcos¦È=1µÄ¹«¹²µãµ½¼«µãµÄ¾àÀëΪ$\frac{\sqrt{5}+1}{2}$£»
£¨2£©Ö±ÏßlµÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{2}}{2}$m£¨mΪ·ÇÁã³£Êý£©»¯³ÉÖ±½Ç×ø±ê·½³ÌΪx+y-m=0£¬
ËüÓëxÖáµÄ½»µã×ø±êΪ£¨m£¬0£©£¬ÓÉÌâÒâÖª£¬£¨m£¬0£©ÎªÍÖÔ²µÄ½¹µã£¬¹Ê|m|=c£¬
ÓÖÖ±ÏßlÓëÔ²O£º¦Ñ=bÏàÇУ¬¡à$\frac{|-m|}{\sqrt{2}}$=b£¬
´Ó¶øc=$\sqrt{2}$b£¬ÓÖb2=a2-c2£¬
¡àc2=2£¨a2-c2£©£¬
¡à3c2=2a2£¬¡à$\frac{c}{a}=\frac{\sqrt{6}}{3}$£®
ÔòÍÖÔ²CµÄÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£®
µãÆÀ ±¾Ì⿼²éÁ½µã¼ä¾àÀ빫ʽ¡¢¼«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯£¬¿¼²éÁËÍÖÔ²µÄÀëÐÄÂÊ£¬¿¼²éÁ˲ÎÊý·½³Ì»¯³ÉÆÕͨ·½³Ì£¬µãµÄ¼«×ø±êºÍÖ±½Ç×ø±êµÄ»¥»¯£¬¿¼²éѧÉú·ÖÎöÎÊÌâµÄÄÜÁ¦£¬Êô»ù´¡Ì⣮
A£® | ¹ØÓڵ㣨$\frac{5¦Ð}{12}$£¬0£©¶Ô³Æ | B£® | ¹ØÓÚÖ±Ïßx=$\frac{5¦Ð}{12}$¶Ô³Æ | ||
C£® | ¹ØÓڵ㣨$\frac{¦Ð}{12}$£¬0£©¶Ô³Æ | D£® | ¹ØÓÚÖ±Ïßx=$\frac{¦Ð}{12}$¶Ô³Æ |
A£® | ÃüÌâ¡°$a£¾b\;£¬\;Ôò\frac{1}{a}£¼\frac{1}{b}$¡±µÄÄæÃüÌâÊÇÕæÃüÌâ | |
B£® | ¶ÔÓÚº¯Êýy=f£¨x£©£¬x¡ÊR¡°y=|f£¨x£©|µÄͼÏó¹ØÓÚyÖá¶Ô³Æ¡±ÊÇ¡°y=f£¨x£©ÊÇÆ溯Êý¡±µÄ³äÒªÌõ¼þ | |
C£® | ÏßÐԻع鷽³Ì$\widehaty=\widehatbx+\widehata$¶ÔÓ¦µÄÖ±ÏßÒ»¶¨¾¹ýÆäÑù±¾Êý¾Ýµã£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡£¬£¨xn£¬yn£©ÖеÄÒ»¸öµã | |
D£® | ÃüÌâ¡°$?{x_0}¡ÊR\;£¬\;x_0^2-{x_0}£¾0$¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬x2-x¡Ü0¡± |
A£® | ËùÓеÄʵÊýx¶¼ÄÜʹx+$\frac{1}{x}$¡Ý2³ÉÁ¢ | |
B£® | ´æÔÚÒ»¸öʵÊýxʹ²»µÈʽx2-2x+3£¼0³ÉÁ¢ | |
C£® | Èç¹ûx¡¢y ÊÇʵÊý£¬ÄÇô¡°xy£¾0¡±ÊÇ¡°|x+y|=|x|+|y|¡±µÄ³ä·Öµ«²»±ØÒªÌõ¼þ | |
D£® | ÃüÌâ¼×£º¡°a¡¢b¡¢c¡±³ÉµÈ²îÊýÁС±ÊÇÃüÌâÒÒ£º¡°$\frac{a}{b}+\frac{c}{b}$=2¡±µÄ³äÒªÌõ¼þ |