题目内容
在三棱锥P-ABC中,给出下列四个命题:①如果PA⊥BC,PB⊥AC,那么点P在平面ABC内的射影是△ABC的垂心;
②如果点P到△ABC的三边所在直线的距离都相等,那么点P在平面ABC内的射影是△ABC的内心;
③如果棱PA和BC所成的角为60°,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1;
④如果三棱锥P-ABC的各条棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于.
其中正确命题的序号是 .
【答案】分析:根据题意画出图形,然后对应选项一一判定即可①若PA⊥BC,PB⊥AC,因为PH⊥底面ABC,所以AH⊥BC,同理BH⊥AC,可得H是△ABC的垂心,②若PA=PB=PC,易得AH=BH=CH,则H是△ABC的外心,③如果棱PA和BC所成的角为60°,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1或;不正确.④如果三棱锥P-ABC的各条棱长均为1,则该三棱锥在任意一个平面内的射影的面积的最大值为.
解答:解:①若PA⊥BC,PB⊥AC,因为PH⊥底面ABC,所以AH⊥BC,同理BH⊥AC,可得H是△ABC的垂心,正确.
②若PA=PB=PC,易得AH=BH=CH,则H是△ABC的外心,正确.
③如果棱PA和BC所成的角为60°,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1或;不正确.
④如果三棱锥P-ABC的各条棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于,正确.
故答案为:①②④.
点评:本题考查棱锥的结构特征,考查学生发现问题解决问题的能力,射影定理的应用等,是中档题.
解答:解:①若PA⊥BC,PB⊥AC,因为PH⊥底面ABC,所以AH⊥BC,同理BH⊥AC,可得H是△ABC的垂心,正确.
②若PA=PB=PC,易得AH=BH=CH,则H是△ABC的外心,正确.
③如果棱PA和BC所成的角为60°,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1或;不正确.
④如果三棱锥P-ABC的各条棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于,正确.
故答案为:①②④.
点评:本题考查棱锥的结构特征,考查学生发现问题解决问题的能力,射影定理的应用等,是中档题.
练习册系列答案
相关题目