题目内容

如图,正方体ABCD-A1B1C1D1的棱长为1,E、F分别是棱BC、DD1上的点,如果B1E⊥平面ABF,则CE与DF的和的值为________.
1
以D1A1、D1C1、D1D分别为x,y,z轴建立空间直角坐标系,设CE=x,DF=y,则易知E(x,1,1),B1(1,1,0),∴=(x-1,0,1),又F(0,0,1-y),B(1,1,1),∴=(1,1,y),由于AB⊥B1E,故若B1E⊥平面ABF,只需·=(1,1,y)·(x-1,0,1)=0⇒x+y=1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网