题目内容

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,E为PA的中点,F为BC的中点,底面ABCD是菱形,对角线AC,BD交于点O.求证:
(1)平面EFO∥平面PCD;
(2)平面PAC⊥平面PBD.
分析:(1)由题意知,EO∥PC,由线面平行的判定定理得到EO∥平面PCD,同理可证,FO∥平面PCD,再由面面平行的判定定理,即得证平面EFO∥平面PCD.
(2)由于PA⊥平面ABCD,得到PA⊥BD,再由已知得到BD⊥平面PAC,由面面垂直的判定定理,即得证平面PAC⊥平面PBD.
解答:解:(1)因为E为PA的中点,O为AC的中点,所以EO∥PC
又EO?平面PCD,PC?平面PCD,所以EO∥平面PCD
同理可证,FO∥平面PCD,又EO∩FO=O
所以,平面EFO∥平面PCD.
(2)因为PA⊥平面ABCD,BD?平面ABCD,所以PA⊥BD
因为底面ABCD是菱形,所以AC⊥BD,又PA∩AC=A
所以BD⊥平面PAC
又BD?平面PBD,所以平面PAC⊥平面PBD.
点评:本小题主要考查空间线面关系,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网