题目内容

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.
分析:(1)先证明AG⊥平面PCD,作EF⊥PC于F,再证EF⊥平面PCD,可得EF∥AG.在应用直线和平面平行的判定定理证得 AG∥平面PEC.
(2)先证明四边形AEFG为平行四边形,AE=GF,求得PG=
9
5
,再由 
GF
CD
=
PG
PD
,求得GF的值,可得AE的值.
(3)过E作EO⊥AC于点O,证得∠EFO即为二面角E-PC-A的平面角. 求出EO=AE•sin45°的值,又EF=AG=
12
5
,由sin∠EFO=
EO
EF
=
18
2
25
×
5
12
,运算求得结果.
解答:解:(1)证明:∵正方形ABCD中,CD⊥AD,由PA⊥平面ABCD可得CD⊥PA,
∴CD⊥平面PAD,∴CD⊥AG.
又PD⊥AG∴AG⊥平面PCD.  …(2分)
作EF⊥PC于F,因面PEC⊥面PCD,∴EF⊥平面PCD,∴EF∥AG.
又AG不在面PEC内,而EF?面PEC,∴AG∥平面PEC.  …(4分)
(2)由(Ⅰ)知A、E、F、G四点共面,又AE∥CD,∴AE∥平面PCD,∴AE∥GF.
∴四边形AEFG为平行四边形,∴AE=GF.    …(5分)
∵PA=3,AB=4,∴PD=5,AG=
12
5

又PA2=PG•PD,∴PG=
9
5
. …(7分)
GF
CD
=
PG
PD
,∴GF=
9
5
×4
5
=
36
25
,∴AE=
36
25
. …(9分)
(3)过E作EO⊥AC于点O,易知EO⊥平面PAC.
又EF⊥PC,∴OF⊥PC,∴∠EFO即为二面角E-PC-A的平面角. …(11分)
EO=AE•sin45°=
36
25
2
2
=
18
2
25
,又EF=AG=
12
5

∴sin∠EFO=
EO
EF
=
18
2
25
×
5
12
=
3
2
10
.     …(14分)
点评:本题主要考查直线和平面平行的判定定理的应用,求线段的长度以及二面角的平面角的大小的方法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网