题目内容
【题目】设椭圆的左焦点为,下顶点为,上顶点为,是等边三角形.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线,过点且斜率为的直线与椭圆交于点 异于点,线段的垂直平分线与直线交于点,与直线交于点,若.
(ⅰ)求的值;
(ⅱ)已知点,点在椭圆上,若四边形为平行四边形,求椭圆的方程.
【答案】(I);(II)(ⅰ)1,(ii)
【解析】
(Ⅰ)根据几何条件得,再求离心率,(Ⅱ)(ⅰ) 设直线方程,解得A,C坐标,即得Q坐标,根据直线交点得P点坐标,根据弦长公式得 ,代入条件解得的值;(ⅱ)先用b表示A,C坐标,根据平行四边形得N坐标,代入椭圆方程得结果.
(I) 由题意可知,, ..
(II)(ⅰ)
设椭圆方程为,
联立得解得:
因为为中点, ,
因为所在的直线方程为
令 解得
=
,解得或(舍)
直线的斜率为1.
(ii),
设四边形为平行四边形,
,
即 ,
又点在椭圆上,
解得,该椭圆方程为:
【题目】随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了人口规模相当的个城市采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价: (单位:元/月)和购买总人数(单位:万人)的关系如表:
定价x(元/月) | 20 | 30 | 50 | 60 |
年轻人(40岁以下) | 10 | 15 | 7 | 8 |
中老年人(40岁以及40岁以上) | 20 | 15 | 3 | 2 |
购买总人数y(万人) | 30 | 30 | 10 | 10 |
(Ⅰ)根据表中的数据,请用线性回归模型拟合与的关系,求出关于的回归方程;并估计元/月的流量包将有多少人购买?
(Ⅱ)若把元/月以下(不包括元)的流量包称为低价流量包,元以上(包括元)的流量包称为高价流量包,试运用独立性检验知识,填写下面列联表,并通过计算说明是否能在犯错误的概率不超过的前提下,认为购买人的年龄大小与流量包价格高低有关?
定价x(元/月) | 小于50元 | 大于或等于50元 | 总计 |
年轻人(40岁以下) | |||
中老年人(40岁以及40岁以上) | |||
总计 |
参考公式:其中
其中
参考数据:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |