题目内容

已知向量
a
=(
2
,-2)
b
=(sin(
π
4
+2x),cos2x)
(x∈R).设函数f(x)=
a
b

(1)求f(-
π
4
)
的值;     
(2)求函数f(x)在区间[0,
π
2
]
上的值域.
分析:(1)利用向量的坐标运算可求得f(x)=
a
b
,从而可求得f(-
π
4
)的值;
(2)由(1)知f(x)=
2
sin(2x-
π
4
),由x∈[0,
π
2
]⇒2x-
π
4
∈[-
π
4
4
],利用正弦函数的单调性质即可求f(x)在x∈[0,
π
2
]上的值域.
解答:解:(1)∵
a
=(
2
,-2),
b
=(sin(
π
4
+2x),cos2x),
∴f(x)=
a
b

=
2
sin(
π
4
+2x)-2cos2x
=
2
2
2
cos2x+
2
2
sin2x)-2cos2x
=sin2x-cos2x
=
2
sin(2x-
π
4
),
∴f(-
π
4
)=
2
sin(-
4
)=-1;
(2)∵x∈[0,
π
2
],
∴2x-
π
4
∈[-
π
4
4
],
∴-
2
2
≤sin(2x-
π
4
)≤1,-1≤
2
sin(2x-
π
4
)≤
2

∴f(x)在x∈[0,
π
2
]上的值域为[-1,
2
].
点评:本题考查平面向量数量积的坐标表示,考查三角函数中的恒等变换应用,考查复合三角函数的单调性,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网