题目内容

11.实数p为何值时,对任意实数x,不等式-9<$\frac{3{x}^{2}+6x+p}{{x}^{2}-x-1}$≤6恒成立.

分析 注意到所给的不等式分母为正,因此可以将问题转化为一元二次不等式恒成立问题,借助于二次函数的知识由判别式小于0,解二次不等式不难解决.

解答 解:不等式-9<$\frac{3{x}^{2}+px+6}{{x}^{2}-x+1}$≤6对?x∈R恒成立,
结合x2-x+1=(x-$\frac{1}{2}$)2+$\frac{3}{4}$>0恒成立,
故原式可化为12x2+(p-9)x+15>0且3x2-(p+1)x≥0对一切x∈R恒成立.
则只需△1=(p-9)2-4×12×15<0且△2=(p+1)2≤0.
则p+1=0,即p=-1.
即有p=-1时,原不等式恒成立.

点评 本题充分注意到分母大于零恒成立,从而将问题转化为一元二次不等式的恒成立问题是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网