题目内容
【题目】离心率为的椭圆经过点,是坐标原点.
(1)求椭圆的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,且?若存在,求出该圆的方程,并求的取值范围;若不存在,请说明理由.
【答案】(1);
(2)存在,理由见解析;圆的方程为;.
【解析】
(1)利用离心率和椭圆所过点联立方程组可求椭圆的方程;
(2)先假设存在符合要求的圆,利用求出圆的切线,结合弦长公式表示出,利用基本不等式求解范围.
(1)因为椭圆经过点,所以;
又离心率为,所以,结合可得,
所以椭圆的方程为.
(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,且,设圆的切线方程为,.
联立得,
即.
因为,所以,即,
所以,即;
因为圆的切线方程为,所以圆的半径为,,所求圆的方程为.
由及可得,即或;
当圆的切线斜率不存在时,切线方程为,切线与椭圆的交点为或者,均满足.
综上可知,存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,且.
因为
所以
当时,由于,所以,当且仅当时,取到最大值3;
当时,;
当斜率不存在时,直线与椭圆交于或者此时.
综上可知,.
【题目】某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.
(1)根据茎叶图中的数据完成列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
购买意愿强 | 购买意愿弱 | 合计 | |
20-40岁 | |||
大于40岁 | |||
合计 |
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,记抽到的2人中年龄大于40岁的市民人数为,求的分布列和数学期望.
附:.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 10.828 |