题目内容
【题目】如图,设点为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,
(1)求椭圆的方程.
(2)当时,求的面积.
【答案】(1)(2)
【解析】
(1)先求出圆心到直线的距离为,再根据得到,解之即得a的值,再根据c=1求出b的值得到椭圆的方程.(2)先求出,,再求得的面积.
(1)因为直线过点,且斜率.
所以直线的方程为,即,
所以圆心到直线的距离为,
又因为,圆的半径为,
所以,即,
解之得,或(舍去).
所以,
所以所示椭圆的方程为 .
(2)由(1)得,椭圆的右准线方程为,离心率,
则点到右准线的距离为,
所以,即,把代入椭圆方程得,,
因为直线的斜率,
所以,
因为直线经过和,
所以直线的方程为,
联立方程组得,
解得或,
所以,
所以的面积.
练习册系列答案
相关题目
【题目】“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:
步数/步 | 10000以上 | ||||
男生人数/人 | 1 | 2 | 7 | 15 | 5 |
女性人数/人 | 0 | 3 | 7 | 9 | 1 |
规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.
(1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为“评定类型与性别有关”;
积极性 | 懈怠性 | 总计 | |
男 | |||
女 | |||
总计 |
附:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行数在的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.