题目内容
【题目】已知函数.
(1)若关于的方程有且只有一个实数根,求实数的取值范围;
(2)若函数的图象总在函数图象的下方,求实数的取值范围.
【答案】(1);(2).
【解析】
(1)由得出,可得出,令,将问题转化为直线与函数的图象只有一个交点,利用导数分析函数的单调性和极值,利用数形结合思想可求得实数的取值范围;
(2)由题意可知不等式对任意的恒成立,令,对实数进行分类讨论,分析函数在区间上的单调性,结合可求得实数的取值范围.
(1)令,得,
设,则直线与函数的图象只有一个交点,
函数的定义域为,,
令,得,列表如下:
极大值 |
所以,函数在处取得极大值,即,如下图所示:
由上图可知,当或时,即当或时,直线与函数的图象只有一个交点,
因此,实数的取值范围是;
(2)令,根据题意知,当时,恒成立.
又.
①若,对任意的恒成立,此时,函数在区间上单调递减,
所以,,得,此时;
②若,当时,;当时,.
所以,函数在区间上单调递减,在区间上单调递增.
当时,,不合乎题意;
③若,对任意的,,则函数在区间上单调递增.
当时,,不合乎题意.
综上,所求实数的取值范围是.
【题目】第7届世界军人运动会于2019年10月18日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:
组别 | |||||||
频数 | 5 | 30 | 40 | 50 | 45 | 20 | 10 |
(1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设,分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求,的值(,的值四舍五入取整数),并计算;
(2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,抽中价值为30元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.
(参考数据:;;.)
【题目】离心率为的椭圆经过点,是坐标原点.
(1)求椭圆的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,且?若存在,求出该圆的方程,并求的取值范围;若不存在,请说明理由.
【题目】某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,该项质量指标值落在区间内的产品视为合格品,否则视为不合格品,如图是设备改造前样本的频率分布直方图,下表是设备改造后样本的频数分布表.
图:设备改造前样本的频率分布直方图
表:设备改造后样本的频率分布表
质量指标值 | ||||||
频数 | 2 | 18 | 48 | 14 | 16 | 2 |
(1)求图中实数的值;
(2)企业将不合格品全部销毁后,对合格品进行等级细分,质量指标值落在区间内的定为一等品,每件售价240元;质量指标值落在区间或内的定为二等品,每件售价180元;其他的合格品定为三等品,每件售价120元,根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.若有一名顾客随机购买两件产品支付的费用为(单位:元),求的分布列和数学期望.
【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:
AQI指数值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
下图是某市10月1日—20日AQI指数变化趋势:
下列叙述错误的是
A. 这20天中AQI指数值的中位数略高于100
B. 这20天中的中度污染及以上的天数占
C. 该市10月的前半个月的空气质量越来越好
D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好