题目内容
【题目】(江苏省南通市2018届高三最后一卷 --- 备用题数学试题)已知函数,其中.
(1)当时,求函数处的切线方程;
(2)若函数存在两个极值点,求的取值范围;
(3)若不等式对任意的实数恒成立,求实数的取值范围.
【答案】(1) .
(2) .
(3) .
【解析】
(1)首先将代入函数解析式,求出函数的导数,求出函数的切线的斜率,利用点斜式写出直线的方程,化简求得结果;
(2)求出函数的导数,利用函数存在两个极值点,是方程的两个不等正根,韦达定理得到关系,将化为关于的函数关系式,利用导数求得结果;
(3)将恒成立问题应用导数来研究,分类讨论,求得结果.
(1)当时,,故,
且,故
所以函数在处的切线方程为
(2)由,可得
因为函数存在两个极值点,所以是方程的两个不等正根,
即的两个不等正根为
所以,即
所以
令,故,在上单调递增,
所以
故得取值范围是
(3)据题意,对任意的实数恒成立,
即对任意的实数恒成立.
令,则
①若,当时,,故符合题意;
②若,
(i)若,即,则,在上单调赠
所以当时,,故符合题意;
(ii)若,即,令,得(舍去),
,当时,,在上单调减;
当时,,在上单调递增,
所以存在,使得,与题意矛盾,
所以不符题意.
③若,令,得
当时,,在上单调增;当时,,
在上单调减.
首先证明:
要证:,即要证:,只要证:
因为,所以,故
所以
其次证明,当时,对任意的都成立
令,则,故在上单调递增,所以,则
所以当时,对任意的都成立
所以当时,
即,与题意矛盾,故不符题意,
综上所述,实数的取值范围是.
练习册系列答案
相关题目