题目内容
【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费的标准是:重量不超过的包裹收费10元;重量超过的包裹,在收费10元的基础上,每超过(不足,按计算)需再收5元.
该公司将最近承揽的100件包裹的重量统计如下:
公司对近60天,每天揽件数量统计如下表:
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,其余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是决策者,是否裁减工作人员1人?
【答案】(1)(2)①平均值可估计为15元. ②公司不应将前台工作人员裁员1人.
【解析】分析:(1)利用古典概型概率公式可估计样本中包裹件数在之间的概率为,服从二项分布,从而可得结果;(2)①整理所给数据,直接利用平均值公式求解即可;②若不裁员,求出公司每日利润的数学期望,若裁员一人,求出公司每日利润的数学期望,比较裁员前后公司每日利润的数学期望即可得结果.
详解:(1)样本中包裹件数在101~300之间的天数为36,频率,
故可估计概率为,
显然未来5天中,包裹件数在101~300之间的天数服从二项分布,
即,故所求概率为
(2)①样本中快递费用及包裹件数如下表:
包裹重量(单位:) | 1 | 2 | 3 | 4 | 5 |
快递费(单位:元) | 10 | 15 | 20 | 25 | 30 |
包裹件数 | 43 | 30 | 15 | 8 | 4 |
故样本中每件快递收取的费用的平均值为,
故该公司对每件快递收取的费用的平均值可估计为15元.
②根据题意及(2)①,揽件数每增加1,公司快递收入增加15(元),
若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:
包裹件数范围 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
包裹件数(近似处理) | 50 | 150 | 250 | 350 | 450 |
实际揽件数 | 50 | 150 | 250 | 350 | 450 |
频率 | 0.1 | 0.1 | 0.5 | 0.2 | 0.1 |
50×0.1+150×0.1+250×0.5+350×0.2+450×0.1=260 |
故公司平均每日利润的期望值为(元);
若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:
包裹件数范围 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
包裹件数(近似处理) | 50 | 150 | 250 | 350 | 450 |
实际揽件数 | 50 | 150 | 250 | 300 | 300 |
频率 | 0.1 | 0.1 | 0.5 | 0.2 | 0.1 |
50×0.1+150×0.1+250×0.5+300×0.2+300×0.1=235 |
故公司平均每日利润的期望值为(元)
因,故公司不应将前台工作人员裁员1人.