ÌâÄ¿ÄÚÈÝ
£¨2012•ÆÕÍÓÇøһģ£©¸ø³öÎÊÌ⣺ÒÑÖª¡÷ABCÂú×ãa•cosA=b•cosB£¬ÊÔÅжϡ÷ABCµÄÐÎ×´£¬Ä³Ñ§ÉúµÄ½â´ðÈçÏ£º
£¨i£©a•
=b•
?a2£¨b2+c2-a2£©=b2£¨a2+c2-b2£©?£¨a2-b2£©•c2=£¨a2-b2£©£¨a2+b2£©?c2=a2+b2
¹Ê¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ®
£¨ii£©Éè¡÷ABCÍâ½ÓÔ²°ë¾¶ÎªR£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£¬ÔʽµÈ¼ÛÓÚ2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
¹Ê¡÷ABCÊǵÈÑüÈý½ÇÐΣ®
×ÛÉÏ¿ÉÖª£¬¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ®
ÇëÎÊ£º¸ÃѧÉúµÄ½â´ðÊÇ·ñÕýÈ·£¿ÈôÕýÈ·£¬ÇëÔÚÏÂÃæºáÏßÖÐд³ö½âÌâ¹ý³ÌÖÐÖ÷ÒªÓõ½µÄ˼Ïë·½·¨£»Èô²»ÕýÈ·£¬ÇëÔÚÏÂÃæºáÏßÖÐд³öÄãÈÏΪ±¾ÌâÕýÈ·µÄ½á¹û
£¨i£©a•
b2+c2-a2 |
2bc |
a2+c2-b2 |
2ac |
¹Ê¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ®
£¨ii£©Éè¡÷ABCÍâ½ÓÔ²°ë¾¶ÎªR£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£¬ÔʽµÈ¼ÛÓÚ2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
¹Ê¡÷ABCÊǵÈÑüÈý½ÇÐΣ®
×ÛÉÏ¿ÉÖª£¬¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ®
ÇëÎÊ£º¸ÃѧÉúµÄ½â´ðÊÇ·ñÕýÈ·£¿ÈôÕýÈ·£¬ÇëÔÚÏÂÃæºáÏßÖÐд³ö½âÌâ¹ý³ÌÖÐÖ÷ÒªÓõ½µÄ˼Ïë·½·¨£»Èô²»ÕýÈ·£¬ÇëÔÚÏÂÃæºáÏßÖÐд³öÄãÈÏΪ±¾ÌâÕýÈ·µÄ½á¹û
µÈÑü»òÖ±½ÇÈý½ÇÐÎ
µÈÑü»òÖ±½ÇÈý½ÇÐÎ
£®·ÖÎö£º£¨i£©ÀûÓÃÓàÏÒ¶¨Àí½«½Ç»¯Îª±ß£¬¼´¿ÉµÃµ½½áÂÛ£»£¨ii£©ÓÉÕýÏÒ¶¨Àí£¬½«±ß»¯Îª½Ç£¬¿ÉµÃ½áÂÛ£®
½â´ð£º½â£º²»ÕýÈ·£¬½â´ðµÄÁ½ÖÖ·½·¨¶¼¿ÉµÃ³ö½áÂÛ£¬µ«¶¼²»ÍêÕû£®
£¨i£©a•
=b•
?a2£¨b2+c2-a2£©=b2£¨a2+c2-b2£©?£¨a2-b2£©•c2=£¨a2-b2£©£¨a2+b2£©?c2=a2+b2»òa2-b2=0£¬¹Ê¡÷ABCÊǵÈÑü»òÖ±½ÇÈý½ÇÐΣ»
£¨ii£©Éè¡÷ABCÍâ½ÓÔ²°ë¾¶ÎªR£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£¬ÔʽµÈ¼ÛÓÚ2RsinAcosA=2RsinBcosB?sin2A=sin2B?A=B»òA+B=
£¬¹Ê¡÷ABCÊǵÈÑü»òÖ±½ÇÈý½ÇÐΣ»
¹Ê´ð°¸Îª£ºµÈÑü»òÖ±½ÇÈý½ÇÐÎ
£¨i£©a•
b2+c2-a2 |
2bc |
a2+c2-b2 |
2ac |
£¨ii£©Éè¡÷ABCÍâ½ÓÔ²°ë¾¶ÎªR£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£¬ÔʽµÈ¼ÛÓÚ2RsinAcosA=2RsinBcosB?sin2A=sin2B?A=B»òA+B=
¦Ð |
2 |
¹Ê´ð°¸Îª£ºµÈÑü»òÖ±½ÇÈý½ÇÐÎ
µãÆÀ£º±¾Ì⿼²éÈý½ÇÐÎÐÎ×´µÄÅжϣ¬½âÌâµÄ¹Ø¼üÊÇÀûÓÃÓàÏÒ¶¨Àí¡¢ÕýÏÒ¶¨Àí½øÐб߽ǻ¥»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿