题目内容
【题目】某企业生产的一种产品的广告费用 (单位:万元)与销售额 (单位:万元)的统计数据如下表:
广告费用 | |||||
销售额 |
(1)根据上述数据,求出销售额(万元)关于广告费用(万元)的线性回归方程;
(2)如果企业要求该产品的销售额不少于万元,则投入的广告费用应不少于多少万元?
(参考数值: .
回归直线的斜率和截距的最小二乘法估计公式分别为: )
【答案】(1) (2)投入的广告费用应不少于万元
【解析】试题分析:(1)由公式求得的值,再根据表格数据先求出样本的中心点坐标,代入回归方程可求得的值即可确定线性回归方程;(2)根据回归方程,由可得结果.
试题解析:(1)由表格数据可得 , , , 所求回归直线方程为.
(2)(万元).
答:投入的广告费用应不少于万元.
【方法点晴】本题主要考查线性回归方程及其应用,属于中档题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;(2) 回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.
【题目】(文科)(本小题满分12分)某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:
组号 | 分组 | 频数 | 频率 |
第一组 | [230,235) | 8 | 0.16 |
第二组 | [235,240) | ① | 0.24 |
第三组 | [240,245) | 15 | ② |
第四组 | [245,250) | 10 | 0.20 |
第五组 | [250,255] | 5 | 0.10 |
合 计 | 50 | 1.00 |
(1)写出表中①②位置的数据;
(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.