题目内容

16.已知实数x,y满足$\left\{\begin{array}{l}x+y-1≥0\\ 2x-y-2≤0\\ x-2y+2≥0\end{array}\right.$,则x-3y的最小值为(  )
A.-4B.-3C.0D.1

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.

解答 解:设z=x-3y,则得y=$\frac{1}{3}x-\frac{z}{3}$,
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=$\frac{1}{3}x-\frac{z}{3}$,
由图象可知当直线y=$\frac{1}{3}x-\frac{z}{3}$经过点A时,直线y=$\frac{1}{3}x-\frac{z}{3}$的截距最大,
此时z最小,
由$\left\{\begin{array}{l}{2x-y-2=0}\\{x-2y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2).
将A(2,2)代入目标函数z=x-3y,
得z=2-3×2=2-6=-4.
∴目标函数z=x-3y的最小值是-4.
故选:A.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网