题目内容
【题目】已知点到点的距离与点到直线的距离相等.
(1)求点的轨迹方程;
(2)设点的轨迹为曲线,过点且斜率为1的直线与曲线相交于不同的两点,,为坐标原点,求的面积.
【答案】(1);(2)
【解析】
(1)由抛物线的定义可知点的轨迹是以为焦点的抛物线,即可求解.
(2)由点斜式求出直线方程,联立直线与抛物线方程,消元,利用韦达定理即可求得三角形的面积.
解:(1)设,
∵动点到点的距离与到定直线的距离相等,
∴点到点的距离等于到直线的距离,
由抛物线定义得:点的轨迹是以为焦点、直线为准线的抛物线.
设抛物线方程为,可得:
,.
∴抛物线的方程为,即为点的轨迹方程.
(2)由直线的斜率为1,
可得直线的方程为,即.
与联立,消去,整理得.
设,,则,,
∴,
因此的面积:
.
【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选出了三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.某学校为了了解高一年级200名学生选考科目的意向,随机选取20名学生进行了一次调查,统计选考科目人数如下表:
性别 | 选考方案确定情况 | 物理 | 化学 | 生物 | 历史 | 地理 | 政治 |
男生 | 选考方案确定的有5人 | 5 | 5 | 2 | 1 | 2 | 0 |
选考方案待确定的有7人 | 6 | 4 | 3 | 2 | 4 | 2 | |
女生 | 选考方案确定的有6人 | 3 | 5 | 2 | 3 | 3 | 2 |
选考方案待确定的有2人 | 1 | 2 | 1 | 0 | 1 | 1 |
(1)在选考方案确定的男生中,同时选考物理、化学、生物的人数有多少?
(2)从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率.
【题目】某高校在2019年的自主招生笔试成绩(满分200分)中,随机抽取100名考生的成绩,按此成绩分成五组,得到如下的频率分布表:
组号 | 分组 | 频数 | 频率 |
第一组 | 15 | ||
第二组 | 25 | 0.25 | |
第三组 | 30 | 0.3 | |
第四组 | |||
第五组 | 10 | 0.1 |
(1)求频率分布表中,,的值;
(2)估计笔试成绩的平均数及中位数(同一组中的数据用该组区间的中点值作代表);(精确到0.1)
(3)若从第四组、第五组的学生中按组用分层抽样的方法抽取6名学生参加面试,用简单随机抽样方法从6人中抽取2人作为正、副小组长,求“抽取的2人为同一组”的概率.