题目内容
【题目】某游乐场过山车轨道在同一竖直钢架平面内,如图所示,矩形的长为130米,宽为120米,圆弧形轨道所在圆的圆心为0,圆O与,,分别相切于点A,D,CT为的中点.现欲设计过山车轨道,轨道由五段连接而成:出发点N在线段上(不含端点,游客从点Q处乘升降电梯至点N),轨道第一段与圆O相切于点M,再沿着圆孤轨道到达最高点A,然后在点A处沿垂直轨道急速下降至点O处,接着沿直线轨道滑行至地面点G处(设计要求M,O,G三点共线),最后通过制动装置减速沿水平轨道滑行到达终点R记为,轨道总长度为l米.
(1)试将l表示为的函数,并写出的取值范围;
(2)求l最小时的值.
【答案】(1),,(2)
【解析】
(1)作,垂足为点,作,垂足为点,可得,,进而得出以及的取值范围;
(2)对进行求导,求出函数的单调性,即可求得最小时的值.
(1)作,垂足为点,作,垂足为点,如图所示:
∴,
∴,
(2)
令,可得;令,可得.
令,,则当时,为单调递减;当时,为单调递增.
∴当时,函数取得最小值,即最小.
【题目】2019年电商“双十一”大战即将开始.某电商为了尽快占领市场,抢占今年“双十一”的先机,对成都地区年龄在15到75岁的人群“是否网上购物”的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用网上购物的人数如下所示:(年龄单位:岁)
年龄段 | ||||||
频率 | 0.1 | 0.32 | 0.28 | 0.22 | 0.05 | 0.03 |
购物人数 | 8 | 28 | 24 | 12 | 2 | 1 |
(1)若以45岁为分界点,根据以上统计数据填写下面的列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“网上购物”与年龄有关?
年龄低于45岁 | 年龄不低于45岁 | 总计 | |
使用网上购物 | |||
不使用网上购物 | |||
总计 |
(2)若从年龄在,的样本中各随机选取2人进行座谈,记选中的4人中“使用网上购物”的人数为,求随机变量的分布列和数学期望.
参考数据:
0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
参考公式: