题目内容
【题目】关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请名同学,每人随机写下一个都小于的正实数对,再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数m来估计的值.假如统计结果是那么可以估计______.
【答案】(或写成3.2)
【解析】
由试验结果知对之间的均匀随机数,对应区域的面积为,两个数能与构成钝角三角形三边的数对,满足且都小,,面积为,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,二者相等,即可求得答案.
由试验结果知对之间的均匀随机数,对应区域的面积为,两个数能与构成钝角三角形三边的数对,满足且都小,,面积为
又几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,二者相等,
统计两数能与构成钝角三角形三边的数对的个数
解题
故答案为:.
【题目】甲、乙两个商场同时出售一款西门子冰箱,其中甲商场位于老城区中心,乙商场位于高新区.为了调查购买者的年龄与购买冰箱的商场选择是否具有相关性,研究人员随机抽取了1000名购买此款冰箱的用户作调研,所得结果如表所示:
50岁以上 | 50岁以下 | |
选择甲商场 | 400 | 250 |
选择乙商场 | 100 | 250 |
(1)判断是否有的把握认为购买者的年龄与购买冰箱的商场选择具有相关性;
(2)由于乙商场的销售情况未达到预期标准,商场决定给冰箱的购买者开展返利活动具体方案如下:当天卖出的前60台(含60台)冰箱,每台商家返利200元,卖出60台以上,超出60台的部分,每台返利50元.现将返利活动开展后15天内商场冰箱的销售情况统计如图所示:与此同时,老张得知甲商场也在开展返利活动,其日返利额的平均值为11000元,若老张将选择返利较高的商场购买冰箱,请问老张应当去哪个商场购买冰箱
附:,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |