题目内容
【题目】在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的100人的得分统计结果如表所示:
组别 | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 2 | 15 | 20 | 25 | 24 | 10 | 4 |
(I)由频数分布表可以大致认为,此次问卷调查的得分Z服从正态分布N(μ,198),μ近似为这100人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求P(37<Z≤79);
(II)在(I)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于μ的可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费;
②每次获赠的随机话费和对应的概率为:
赠送话费的金额(单元:元) | 20 | 40 |
概率 |
|
|
现有市民甲参加此次问卷调查,记ξ(单位:元)为该市民参加问卷调查获赠的话费,求ξ的分布列与数学期望.附:参考数据与公式:14.
若X~N(μ,σ2),则P(μ﹣σ<X≤μ+σ)=0.6826;P(μ2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.
【答案】(Ⅰ)0.8185.(Ⅱ)见解析.
【解析】
(Ⅰ)由题意求出Ez=65,从而μ=65,进而P(51<Z≤79)=0.6826,P(37<Z≤93)=0.9544.由此能求出P(37<Z≤79).
(Ⅱ)由题意知P(Z<μ)=P(Z≥μ),获赠话费ξ的可能取值为20,40,60,80.分别求出相应的概率,由此能求出的分布列和Eξ.
解:(Ⅰ)由题意得Ez=35×0.025+45×0.15+55×0.2+65×0.25+75×0.24+5×0.1+95×0.04=65.
∴μ=65,∵σ14,
∴P(65﹣14<Z≤65+14)=P(51<Z≤79)=0.6826,
P(65﹣2×14<Z≤65+2×14)=P(37<Z≤93)=0.9544,
∴P(31<Z≤51)[P(37<Z≤93)﹣P(51<Z≤79)]=0.1359
综上P(37<Z≤79)=P(37<Z≤51)+P(51<Z≤79)≈0.1359+0.6826=0.8185.
(Ⅱ)由题意知P(Z<μ)=P(Z≥μ),
获赠话费ξ的可能取值为20,40,60,80.
P(ξ=20);
P(ξ=40);
P(ξ=60);
P(ξ=80);
ξ 的分布列为:
ξ | 20 | 40 | 60 | 80 |
P |
|
|
|
|
∴Eξ=2040608037.5.
【题目】某研究性学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:
使用智能手机 | 不使用智能手机 | 合计 | |
学习成绩优秀 | 4 | 8 | 12 |
学习成绩不优秀 | 16 | 2 | 18 |
合计 | 20 | 10 | 30 |
经计算,则下列选项正确的是( )
0.50 | 0.25 | 0.1 | 0.050 | 0.010 | 0.005 | 0.001 | |
0.455 | 1.323 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
A.有99.5%的把握认为使用智能手机对学习有影响
B.有99.5%的把握认为使用智能手机对学习无影响
C.有99.9%的把握认为使用智能手机对学习有影响
D.有99.9%的把握认为使用智能手机对学习无影响